Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.

نویسندگان

  • T Pape
  • W Wintermeyer
  • M Rodnina
چکیده

The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosome fidelity: tRNA discrimination, proofreading and induced fit.

The ribosome selects aminoacyl-tRNAs with high fidelity. Kinetic studies reveal that codon-anticodon recognition both stabilizes aminoacyl-tRNA binding on the ribosome and accelerates reactions of the productive pathway, indicating an important contribution of induced fit to substrate selection. Similar mechanisms are used by other template-programmed enzymes, such as DNA and RNA polymerases.

متن کامل

Kinetic determinants of high-fidelity tRNA discrimination on the ribosome.

The ribosome selects aminoacyl-tRNA (aa-tRNA) matching to the mRNA codon from the bulk of non-matching aa-tRNAs in two consecutive selection steps, initial selection and proofreading. Here we report the kinetic analysis of selection taking place under conditions where the overall selectivity was close to values observed in vivo and initial selection and proofreading contributed about equally. C...

متن کامل

Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs.

The ribosome uses initial and proofreading selection of aminoacyl-tRNAs for accurate protein synthesis. Anomalously high initial misreading in vitro of near-cognate codons by tRNA(His) and tRNA(Glu) suggested potential error hotspots in protein synthesis, but in vivo data suggested their partial neutralization. To clarify the role of proofreading in this error reduction, we varied the Mg(2+) io...

متن کامل

Distinct functional classes of ram mutations in 16S rRNA.

During decoding, the ribosome selects the correct (cognate) aminoacyl-tRNA (aa-tRNA) from a large pool of incorrect aa-tRNAs through a two-stage mechanism. In the initial selection stage, aa-tRNA is delivered to the ribosome as part of a ternary complex with elongation factor EF-Tu and GTP. Interactions between codon and anticodon lead to activation of the GTPase domain of EF-Tu and GTP hydroly...

متن کامل

How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome

It has long been recognized that the thermodynamics of mRNA-tRNA base pairing is insufficient to explain the high fidelity and efficiency of aminoacyl-tRNA (aa-tRNA) selection by the ribosome. To rationalize this apparent inconsistency, Hopfield proposed that the ribosome may improve accuracy by utilizing a multi-step kinetic proofreading mechanism. While biochemical, structural and single-mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 18 13  شماره 

صفحات  -

تاریخ انتشار 1999